

Structural Design in an Adaptive Reuse Project

A look at the structure behind 246 West 17th Street New York, NY

Presented by: Alissa Popovich

Faculty Consultant: Dr. Ali Memari

The Department of Architectural Engineering at The Pennsylvania State University April 13, 2009

Presentation Outline

Project Introduction Existing Conditions Structural Depth Study New York, NY Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Design in an Adaptive Reuse Project

A look at the structure behind Proposal & Design Goals 246 West 17th Street

> Presented by: Alissa Popovich

Faculty Consultant: Dr. Ali Memari

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Project Introduction

Location 236 West 17th Street, New York, NY Occupancy Type Residential (34 Condominium Units)

Owner Anthony Leichter Structural Engineers Robert Silman Associates Architect Rawlings Architects

Building Height 131.0' feet (10 stories) Building Area 54,000 square feet Construction Cost \$16.5 million

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Existing Conditions

Adaptive Reuse + New Construction

The building was once a 3-story brick garage from 1925

Transfer Level \longrightarrow

Historic Steel and Masonry -

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Existing Conditions

Historic Structure

- Steel framing (30ksi)
- Mass masonry exterior bearing walls
- 8" draped-mesh slab system (860psi)
- Typical bay size: 20'-8" x 35'-6"

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Existing Conditions

Historic Structure

- Steel framing (30ksi)
- Mass masonry exterior bearing walls
- 8" draped-mesh slab system (860psi)
- Typical bay size: 20'-8" x 35'-6"

Current Structure

- 8" two-way flat-plate concrete slab system
- Circular and rectangular gravity columns
- 2 (10") concrete shear walls in each direction
- Foundation consists of 3'-10" thick mat slab and spread footings

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Proposal & Design Goals

Problem Statement	The seven stories of concrete structure added atop the historic steel and masonry structure contribute an extensive amount of weight to the building.
Proposed Solution	Redesign the concrete addition as a steel to decrease the weight on the historic system.
Design Goals	 More efficient reinforcing of historic members at transfer level Decrease size and/or depth of foundation
	• Incorporate historic steel members into lateral system

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Current Loads	 Based on the requirements within the New York City Building Code (NYCBC)
Proposed Gravity Loads	 Live loads based on ASCE7-05 minimum distributed load requirements Dead loads based on requirements within ASCE7-05 and known values of material weights
Proposed Lateral Loads	 Wind and seismic loads determined in RAM Structural System in accordance ASCE7-05

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Computer Modeling using RAM SS

- All diaphragms modeled as rigid
- Assumed adequate connections and load transfer between new and historic structure
- Assumed that all columns be braced at floor levels
- Masonry modeled with cracked section property of 0.6
- Story forces placed at 5% eccentricity to account for accidental torsion
- Historic steel modeled using conservative and comparable modern sections based on weight, depth, and stiffness

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Gravity System Design

• Frame layout based on existing column grid to minimize effects on interior architecture

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Gravity System Design

- Frame layout based on existing column grid to minimize effects on interior architecture
- Slab and deck selection based on span and fireproofing requirements:
 - 6" lightweight concrete slab with
 - 3" Lok-Floor composite deck s
- Steel sized in accordance with the *AISC Manual of Steel Construction* LRFD design methods
 - Composite design of beams and girders found to be more efficient

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Member Reinforcement

At the 3rd floor transfer level:

• SIX girders to be reinforced in existing design

/	\frown
(1.1
	1.0° 19-8°
]	wit281
	W14x38
	W14x38
	<u>W14x38</u>
	W14x38
	<u>W14x38</u>
	W14x43
	W14
	<u>W14x38</u>
	W14x38
	W14x38
	W14x38
	W12x26
	W10x22 W12x30

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Member Reinforcement

At the 3rd floor transfer level:

• SIX girders to be reinforced in existing design

- Only FOUR to be reinforced in proposed design Reinforcement designed using plastic analysis
 - Old design: (2)W27x194 New design: (2)W24x176

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Member Reinforcement

Historic column reinforcement:

- 4 columns on each of the first 3 levels
- Frame geometry controlled initial column size Continuous reinforcing required between stories

									ũ	5.9)	
(2		3) (4)	(\mathbf{D}		6)	
	/	20'-8"		20'-8*	-	20'-8*		,	19'-8"	1:0		
g				 -	I		6	<u> </u>	W12x19	==)
30 Gr	 	<u>W14x38_30 Gr</u>	27x178	<u>W14x38_30 Gr</u>	30Gr	W14x38_30 Gr			W12x26		14:0	
30 Gr		W14x38_30 Gr		W14x38_30 Gr	si 	<u>W14x38_30 Gr</u>						\sim
30 Gr	30gr	<u>W14x38_30 Gr</u>		W14x22		W14x38_30 Gr	N27k178	30Gr	W12x26 W12x26	-H	B	(A.9)
30 Gr		W14x38_30 Gr	li me	W12x26 W14x38_30 Gr		W14x38_30 Gr			W12x26	2		
30 Gr	 	W14x38_30 Gr		W12x26	900 i	<u>W14x38_30 Gr</u>				W18x4:	20'8"	
<u>30Gr</u>		W14x38 30 Gr		W14x38_30 Gr			-]	<u>W14x38_30 Gr</u>	-H	(0)
x38		W14x38_30 Gr		<u>W14x38_30 Gr</u>		W14x38_30 Gr	9	 	W14x43 30 Gr	22	4	
30 Gr(2		W14x38_30 Gr	2) W24x17	W14x38_30 Gr		W14x38_30 Gr	2) W24x17		W14x34_30 Gr	i W14x		`
<u>30 Gr</u>	# ◆ 	<u>W14x38_30 Gr</u>	- <u>-</u>	◆ <u>W14x38_30 Gr</u>		>W14x38_30 Gr		¢ 	<u>W14x34_30 Gr</u>	H 	11 14°)
30 Gr		W14x38_30 Gr	W28	<u>W16x57_30 Gr</u>		W16x57_30 Gr	W28 3		<u>W14x34_30 Gr</u>)
30 Gr		W14x38_30 Gr		<u>W14x34_30 Gr</u>	Į.	W14x34_30 Gr			W14x34_30 Gr		13*2 3.4*	
30 Gr	l.		ł		ļ		ļ			H	F	
30 Gr 30 Gr	935 1 1 1		®		織 		®			_== 		
					 + -						E 5	
			F	3rd Floor Proposed Desig	n							/

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Member Reinforcement

Historic column reinforcement:

- 4 columns on each of the first 3 levels
- Frame geometry controlled initial column size Continuous reinforcing required between stories
- Final design: 26" x 26" column (4ksi)

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Lateral System Design

• Drift limitations:

- · L/600 for historic stories
- · L/400 for modern stories
- 1-1/8" overall deflection at 6th floor level in the E-W direction due to seismic joint
- Chevron braces chosen as lateral force resisting members
 - \cdot 2 frames designed in each direction

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Lateral System Design

- Design process in RAM SS:
 - Brace, column, and beam design for lateral strength requirements
 - Brace design for lateral deflection limitations
 * Deflection controlled the design
 - · Column design for lateral deflection limitations
 - · Brace, column, and beam check based on
 - lateral strength requirementsBeam check and re-design based gravity
 - requirements
- Seismic drift amplification factor

• C_d = 3.25

Level	: Total Ht. : Story Ht.	
BH	: 134.486 : 14.500	
Roof	119.986 11.167	
10	108.819 11.167	
9	97.652 11.167	
	· 86.485 · 11.167	
7	÷ 75 210 ÷ 11 167	
6	64.151 11.167	
4	: 41.817 : 11.167	
3	30.65 14.400	
2	: 16.25 : 16.250	
1	: 0 : 0	
DRIFT D	АТА	
Y-DIREC	TION (N-S)	
Level	Total Ht. Story Ht.	•
Level BH	Total Ht. Story Ht. 134.486 14.500	
Level BH Roof	Total Ht. Story Ht. 134.486 14.500 119.986 11.167	•
Level BH Roof 10	Total Ht. Story Ht. 134.486 14.500 119.986 11.167 108.819 11.167	•
Level BH Roof 10 9	Total Ht. Story Ht. 134.486 14.500 119.986 11.167 108.819 11.167 97.652 11.167	
Level BH Roof 10 9 8	Total Ht. Story Ht. 134.486 14.500 119.986 11.167 108.819 11.167 97.652 11.167 86.485 11.167	•

DRIFT DATA

X-DIRECTION (E-W)

10	. 108.819	. 11.16/
9	97.652	11.167
8	86.485	11.167
7	75.318	11.167
6	64.151	11.167
5	52.984	11.167
4	41.817	11.167
2		4 4 4 0 0

 3
 30.65
 14.400

 2
 16.25
 16.250

 1
 0
 0

	Wind D	rifts [in]			S	eismic Drifts [iı	n]	
Tota	l Drift	Story Drift	Allowable Story Drift		Total Drift		Story Drift	Allowable Story Drift
Load Case	Δ Wind	∆ Story	h/400, h/600	Load Case	∆ Elastic	Δ Amplified	Δ Story	0.020h _{sy}
W1, W2	1.869	0.230	0.44	E2	0.684	2.223	0.286	3.48
W1, W2	1.639	0.182	0.34	E2	0.596	1.937	0.224	2.68
W1, W2	1.457	0.184	0.34	E2	0.527	1.713	0.228	2.68
W1, W2	1.273	0.181	0.34	E2	0.457	1.485	0.224	2.68
W1, W2	1.092	0.177	0.34	E2	0.388	1.261	0.218	2.68
\\\/1\\\/2	0.015	0 167	0.24	E.2	0 2 2 1	1 0/2	0.205	7 60
W1, W2	0.748	0.161	0.34	E2	0.258	0.839	0.189	2.68
VV1, VV2	0.507	0.175		·····;	0.200	0.050	0.1/2	2.00
W1, W2	0.438	0.138	0.22	E2	0.147	0.478	0.156	2.68
W1, W2	0.300	0.156	0.29	E2	0.099	0.322	0.172	3.46
W1, W2	0.144	0.144	0.33	E2	0.046	0.150	0.150	3.90
N/A	0	0	0	N/A	0	0	0	0
		W	1 = Wind	+X, W2	= Wind -	-X E2	2 = Earthc	quake +X
Wind Drifts [in]								
	Wind Di	rifts [in]			S	eismic Drifts [ii	n]	
Tota	l Drift	rifts [in] Story Drift	Allowable Story Drift		S Total Drift	eismic Drifts [iı	n] Story Drift	Allowable Story Drift
Tota	U Drift	rifts [in] Story Drift Δ Story	Allowable Story Drift	Load Case	S Total Drift Δ Elastic	eismic Drifts [in	n] Story Drift Δ Story	Allowable Story Drift
Tota Load Case W3, W4	Wind D I Drift Δ Wind 1.629	rifts [in] Story Drift ∆ Story 0.014	Allowable Story Drift h/400, h/600 0.44	Load Case E4	S Total Drift Δ Elastic 1.979	eismic Drifts [in Δ Amplified 6.412	n] Story Drift ∆ Story 0.075	Allowable Story Drift 0.020h _{sx} 3.48
Tota Load Case W3, W4 W3, W4	Wind D I Drift Δ Wind 1.629 1.615	rifts [in] Story Drift ∆ Story 0.014 0.215	Allowable Story Drift h/400, h/600 0.44 0.34	Load Case E4 E4	S Total Drift Δ Elastic 1.979 1.956	eismic Drifts [in Δ Amplified 6.412 6.337	n] Story Drift Δ Story 0.075 0.862	Allowable Story Drift 0.020h _{sx} 3.48 2.68
Tota Load Case W3, W4 W3, W4 W3, W4	Wind D I Drift Δ Wind 1.629 1.615 1.400	rifts [in] Story Drift △ Story 0.014 0.215 0.223	Allowable Story Drift h/400, h/600 0.44 0.34 0.34	Load Case E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690	eismic Drifts [in Δ Amplified 6.412 6.337 5.475	n] Story Drift △ Story 0.075 0.862 0.891	Allowable Story Drift 0.020h _{sx} 3.48 2.68 2.68
Tota <u>Load Case</u> W3, W4 W3, W4 W3, W4 W3, W4 W3, W4	Wind D I Drift Δ Wind 1.615 1.615 1.400 1.177	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34	Load Case E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415	eismic Drifts [in Δ Amplified 6.412 6.337 5.475 4.585	n] Story Drift △ Story 0.075 0.862 0.891 0.836	Allowable Story Drift 0.020h, 3.48 2.68 2.68 2.68
Tota <u>Load Case</u> W3, W4 W3, W4 W3, W4 W3, W4 W3, W4	Wind D I Drift <u>Δ Wind</u> <u>1.629</u> <u>1.615</u> <u>1.400</u> <u>1.177</u> 0.963	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34	Load Case E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157	eismic Drifts [in Δ Amplified 6.412 6.337 5.475 4.585 3.749	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810	Allowable Story Drift 0.020h _{sx} 3.48 2.68 2.68 2.68 2.68 2.68
Tota Load Case W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4	Wind D I Drift Δ Wind 1.615 1.400 1.177 0.963 0.757	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907	eismic Drifts [in Δ Amplified 6.412 6.337 5.475 4.585 3.749 2.939	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797	Allowable Story Drift 0.020h _{sx} 3.48 2.68 2.68 2.68 2.68 2.68 2.68
Tota Load Case W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4	Wind D I Drift Δ Wind 1.615 1.615 1.400 1.177 0.963 0.757 0.555	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661	eismic Drifts [in Δ Amplified 6.337 5.475 4.585 3.749 2.939 2.142	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797 0.755	Allowable Story Drift 0.020h 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.6
Tota Load Case W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4	Wind D I Drift <u>Δ Wind</u> <u>1.615</u> <u>1.615</u> <u>1.400</u> <u>1.177</u> <u>0.963</u> <u>0.757</u> <u>0.555</u> <u>0.362</u>	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193 0.145	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661 0.428	eismic Drifts [in Δ Amplified 6.412 6.337 5.475 4.585 3.749 2.939 2.142 1.387	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797 0.755 0.687	Allowable Story Drift 0.020h 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.6
Tota Load Case W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4 W3, W4	Wind D I Drift <u>Δ Wind</u> <u>1.615</u> <u>1.400</u> <u>1.177</u> <u>0.963</u> <u>0.757</u> <u>0.555</u> <u>0.362</u> <u>0.217</u>	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193 0.145 0.177	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661 0.428 0.216	eismic Drifts [ii Δ Amplified 6.412 6.337 5.475 4.585 3.749 2.939 2.142 1.387 0.700	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797 0.755 0.687 0.564	Allowable Story Drift 0.020h _{sx} 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.6
Tota Load Case W3, W4 W3, W4	Wind D I Drift Δ Wind 1.615 1.615 1.400 1.177 0.963 0.757 0.555 0.362 0.217 0.040	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193 0.145 0.177 0.024	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661 0.428 0.216 0.042	eismic Drifts [ii △ Amplified 6.337 5.475 4.585 3.749 2.939 2.142 1.387 0.700 0.136	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797 0.755 0.687 0.564 0.075	Allowable Story Drift 0.020h _∞ 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.6
Tota Load Case W3, W4 W3, W4	Wind D I Drift Δ Wind 1.629 1.615 1.400 1.177 0.963 0.757 0.555 0.362 0.217 0.040 0.016	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193 0.145 0.177 0.024 0.016	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661 0.428 0.216 0.042 0.019	eismic Drifts [in Δ Amplified 6.412 6.337 5.475 4.585 3.749 2.939 2.142 1.387 0.700 0.136 0.062	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797 0.755 0.687 0.564 0.075 0.062	Allowable Story Drift 0.020h 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.6
Tota Load Case W3, W4 W3, W4 N/A	Wind D I Drift <u>Δ Wind</u> <u>1.629</u> <u>1.615</u> <u>1.400</u> <u>1.177</u> <u>0.963</u> <u>0.757</u> <u>0.555</u> <u>0.362</u> <u>0.217</u> <u>0.040</u> <u>0.016</u> <u>0</u>	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193 0.145 0.177 0.024 0.016 0	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661 0.428 0.216 0.042 0.019 0	eismic Drifts [in Δ Amplified 6.412 6.337 5.475 4.585 3.749 2.939 2.142 1.387 0.700 0.136 0.062 0	n] Story Drift △ Story 0.075 0.862 0.891 0.836 0.810 0.797 0.755 0.687 0.564 0.075 0.062 0	Allowable Story Drift 0.020h _{sx} 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.6
Tota Load Case W3, W4 W3, W4 M3, W4 M3, W4 M3, W4 M3, W4 M3, W4 M3, W4 M3, W4 M3, W4	Wind D I Drift Δ Wind 1.615 1.615 1.400 1.177 0.963 0.757 0.555 0.362 0.217 0.040 0.016	rifts [in] Story Drift △ Story 0.014 0.215 0.223 0.214 0.206 0.202 0.193 0.145 0.177 0.024 0.016 0	Allowable Story Drift h/400, h/600 0.44 0.34 0.34 0.34 0.34 0.34 0.34 0.	Load Case E4 E4 E4 E4 E4 E4 E4 E4 E4 E4	S Total Drift Δ Elastic 1.979 1.956 1.690 1.415 1.157 0.907 0.661 0.428 0.216 0.042 0.019 0 – W/ipol	eismic Drifts [ii Δ Amplified 6.412 6.337 5.475 4.585 3.749 2.939 2.142 1.387 0.700 0.136 0.062 0 V Ε	n] Story Drift <u>A Story</u> 0.075 0.862 0.891 0.836 0.810 0.797 0.755 0.687 0.564 0.075 0.062 0 1 – Eartho	Allowable Story Drift 0.020h 3.48 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.68 3.46 3.90 0

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Structural Depth Study

Foundation Impacts

Current design 3'-10" mat slab 3'-10" continuous spread footing

- Proposed design
 - 3' mat slab (10" decrease)
 - 2' continuous spread footing (22" decrease)

Foundation Design Comparison Current Design Proposed Design Difference Mat Slab 5528.7 4956.2 Surface Area [SF] -572.5 Thickness [inches] 36.0 46 -10.0 Concrete Volume [CY] 784.3 550.7 -233.6 Current Design Proposed Design Difference Continuous Footing Surface Area [SF] 501 511 10.0 Thickness [inches] 46 24.0 -22.0 Concrete Volume [CY] 71.1 37.9 -33.2 Total Conc. Volume [CY] 855.3 -266.8 588.5

CURRENT FOUNDATION DE

	Area = 4956.2 SF Volume = 550.7 CY
olume = 71.1 CY	Area = 511 SF Volume = 37.0 CF

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Construction Cost Study

Cost Considerations

- Materials
 - Concrete (foundations, structural system)Steel (rebar, reinforcing members)
- Concrete labor
 - Formwork
 - •Placement (concrete, rebar)
 - Finishing
- Steel labor
 - Welding
 - Bolted connections

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Construction Cost Study

Estimated Savings per System

- Cost values based on relative savings seen in labor and materials associated with the system change
- Total savings amount to 7.6% of overall project cost

Current (Concrete) System	Proposed (Steel) System	Savings
Foundation Cost	Foundation Cost	In Foundations
\$202,133	\$140,687	\$61,446
Superstructure Cost	Superstructure Cost	In Superstructure
\$2,423,497	\$1,235,295	\$1,188,202
Total Cost	Total Cost	In Total Cost
\$16,500,000	\$15,250,352	\$1,249,648

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Construction Cost Study

Total Cost Comparison

Overall cost estimates based on relative cost savings

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions & Recommendations Acknowledgements Questions

Conclusions & Recommendations

Structural Design	 Structural design goals attained: ✓ Historic members utilized in the lateral system ✓ Reduced transfer beam reinforcing member size ✓ Decreased foundation depths
Construction Cost	 Construction cost findings: ✓ Decreased foundation depth means less excavation and foundation material (cost savings) ✓ Fewer reinforced historic steel members means less associated labor and materials (cost savings) ✓ Overall estimated savings of \$1.25 million (7.6%)
Conclusion	Recommend changing the structural system of the addition from concrete to steel

Presentation Outline

Project Introduction Existing Conditions Proposal & Design Goals Structural Depth Study Construction Cost Study Conclusions Acknowledgements Questions

Acknowledgements

The Pennsylvania State University, Department of Architectural Engineering	 Dr. Ali Memari Prof. Kevin Parfitt Prof. Robert Holland Dr. Louis Geschwindner Mr. Corey Wilkinson
Robert Silman Associates	 Mr. Eytan Solomon
Rawlings Architects	• Ms. Kai Cheung
Pandiscio Co	• Mr. Sean Conway
Owner	• Mr. Anthony Leichter

